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INTRODUCTION

The previous paper introduced the general
reservoir modeling workflow. One topic was
left aside though: geostatistics. It is the focus of
the present paper. Geostatistics are a whole set
of techniques that allow modeling properties in
three dimensions (3D) by taking into account
the spatial variations of these properties. The
topic is large and can’t be covered in one
paper. We narrowed down to kriging and
simulation techniques, which are the more
popular techniques by far. We also narrowed
down to the modeling of rock types — and by
generalization of discrete properties. Similar
techniques exist for continuous properties
like porosity. Once the concepts presented
hereafter are assimilated, the reader will have
no problem transferring them to the equivalent
techniques for continuous properties.

RULE No I:FIRST TRUST YOUR
BRAIN AND ONLY THEN
THE MACHINE

We are interpreting reservoirs from a limited
amount of data — wells and seismic mostly.
To palliate to this problem, we evaluate
the reservoir characteristics between data
points using interpolation and extrapolation
techniques. Numerous mathematical
techniques exist and it is up to us to select the
one(s) most appropriate to a given property
type (discrete/continuous), to a specific
property (facies, porosity, permeability...), to
the specific geological characteristics of the
studied reservoir (clastic, carbonates, channels,
reefs...) and to the specific purpose of the
model (deterministic model / quantifying the
uncertainties).

Interpolation means evaluating the property
between the available data points. It is usually
a well-defined problem, as the data points limit
the possible range of the property. On the
contrary, extrapolation means interpreting
the property beyond the last data point. It is
a much more difficult problem as one can’t
be sure if the trend observed around the last
set of data can be propagated far past the last
known value. The last section will illustrate
this problem. Extrapolation problems can
be turned into interpolation problems by
including data on the immediate surroundings
of the zone of interest (see the Figure 3 of the
March paper for an example). All evaluation
techniques interpolate and extrapolate at the
same time.VVe have us to keep in mind which
areas correspond more to extrapolation than
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interpolation, so as to be more skeptical about
the model where extrapolation prevails.

Evaluation techniques can be deterministic
or probabilistic. The former give a unique
solution, such as the orange geometry for
horizon A (Figure I). The later will provide
multiple solutions, such as the set of possible
black geometries (Figure 1). Each realization
respects the input parameters, here the well
picks, while showing variations between the
data points. Probabilistic techniques allow
taking into account the uncertainty. In Figure I,
we will never know exactly where the horizon
lays between the well picks. But at least we can,
and we should, quantify the level of uncertainty
whenever possible.

i

Figure |. Evaluating the geometry of a horizon between
wells in a deterministic way (orange line) or in a
probabilistic way (black lines).

Mathematical evaluation techniques available
on our computers are useful. For example,
they allow quick testing of multiple models.
Also, all the input parameters can be archived
and the method rerun at a later stage. But,
we must never forget that these techniques
are the automation of the manual evaluation
techniques that we, scientists, master. As such,
we should never trust blindly what computers
compute for us. If the results don’t seem to
make sense based on what we know about
the reservoir (geological context, typical fluid
characteristics, statistics at the wells...), then
we must first, double-check how we used the
software before eventually changing our vision
of the reservoir. It must never be done the
other way around. Maybe we simply didn’t use
the most appropriate evaluation technique
or we didn’t set its parameters correctly. Of
course, no need to be extreme the other way.
If everything ran as it should and the results still
can’t back up the assumptions, our hypotheses
might need to be updated. Figures 2 to 13 and
the accompanying text illustrate this point.

Geostatistics is the largest evaluation toolbox
available to us, thanks to several main types
of algorithms, which can, in turn, take multiple
different types of input, from the most basic

to the most sophisticated. Geostatistics are
powerful because these techniques not only
take into account the univariate statistics
(mean value, min/max values, standard
deviation...), but they also take into account
how the property is varying spatially between
the data points. This is perfect for modelers, as
many reservoir properties vary spatially. For
example, rock types will have accumulated
differently in different parts of the reservoir,
depending on the geological context (fluvial,
marine...). Porosity might be increasing with
depth because of the increasing compaction.
As another example, water saturation will vary
spatially depending on the fluid zone (gas, oil,
water) and it might also vary depending on the
distance to the contact itself (transition zone
above an oil-water contact).

Variograms are the key mathematical objects
used to capture the spatial variability of the
data. They are input to kriging and simulation
techniquesVariograms are to the understanding
of spatial variability as histograms are to the
understanding of univariate statistics: essential.
For this reason, variograms are explained in
the next section to some details so that every
asset team member can understand how
their reservoir modeler defined them in their
project.As promised in the introduction paper
though, the next section is free of any equation.

Once the notion of variogram is explained,
the remainder of this paper goes through a
simplified 2D dataset of a fluvial system to
illustrate the results obtained by these two
types of techniques.

VARIOGRAMS,AT THE HEART OF
GEOSTATISTICS

In the next two sections, we’'ll go through the
modeling of a sand/shale facies distribution,
first using a dense dataset (Figure 2A) and then
a limited dataset extracted from the dense
dataset (Figure 2B). In this section, we are
focusing on the variograms that will be used
with this dataset.

Figure 2 shows the different variograms that
will be used in the next sections.Variograms are
represented on a map either as circles (black
circles, Figure 2) or as ellipses (red and green
ellipses, Figure 2). By extension, 3D variograms
are represented as spheres or ellipsoids.
A circular variogram means that there is no
preferred orientation in the data. On the
contrary, the more anisotropic the ellipse is,
the more elongated and narrow the facies



will be distributed in that direction. When the
property is evaluated at a given empty location,
the variogram being used (circle or ellipse)
is centered on this location. The data points
found inside the circle will have an influence
on the value that will be computed at the
new location. The data points outside of the
variogram won’t have any impact.

Figure 2. Dense (A) and limited (B) input dataset of
sand and shale + variograms used as input for kriging
and simulation.

Kriging algorithms use only the input data points, which
is why kriging is a deterministic technique. Simulation
algorithms, on the contrary, use both the input data
points and the values that were computed before
moving to this location. Simulations are probabilistic
in nature because the empty nodes are not populated
in the same order from one realization to the next.
As a result, when the time comes to populate a given
location, the surrounding available data will be different
from realization to realization. For more details on how
the surrounding data are used, please refer to (Pyrcz
and Deutsch, 2014) for example.

2D isotropic variograms are defined by their
range and their sill. The range represents the
radius of the circle/ellipse. The sill will be
defined in the next paragraph. 2D anisotropic
variograms are defined by their maximum and
minimum ranges, represented respectively by
the ellipse semi-major and semi-minor axes.
They are also defined by a sill, as for isotropic
variogram,and by the azimuth of the semi-major
axis (referenced to the North; 150 degrees
on Figure 2 for example). A 3D variogram is
usually defined as the combination of a 2D
horizontal isotropic or anisotropic variogram
and a vertical range. The vertical range is
much smaller than the horizontal ranges. It
reflects the fact that geological properties are
continuous over a large area, while they rapidly
change in the direction of deposition (here
referred to as vertical). A true 3D variogram

implies that the ellipsoid can have a dip and
a plunge. True 3D variograms are used when
we assume that the plane of deposition is not
horizontal but inclined.True 3D variograms are
not commonly used, but they are gaining some
traction for example in oil sands project to
model dipping IHS.

Variograms are defined using variogram
analyzers (Figure 3 and Figure 4). The correlation
found in different orientations (azimuths)
is analyzed to identify the directions of the
maximum and minimum horizontal ranges
(Azimuths 150 and 60 degrees respectively in
our dataset). For a given azimuth, the analyzer
superimposes two objects: the experimental
variogram and the variogram model. The
experimental variogram is a succession of
points computed from the input data. The
variogram model is a mathematical equation
that we have to adjust to the points of the
experimental variogram. The circle/ellipses
(Figure 2) are the spatial representations of the
corresponding variogram models.
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Figure 3.Variogram analyzers showing the experimental
variograms for the dense dataset (Figure 2A) along
the azimuths 60 and |50 degrees + variogram model
for the circular variogram (A), the slightly elongated
variogram (B) and the flattened variogram (C).

The modeling expert feeds two main datasets
to the variogram analyzer: a set of azimuths
and a set of distances between data points.
The horizontal axis of the variogram analyzer
represents these distances. For our dataset,
we decided to compare each data point with
the nearby point, if any, 400 meters away. We
then do the same for a distance of 800 meters
and so on until distances of 8000 meters.As a
result, our experimental variograms have one
point every 400 m.We did so in 10 different
azimuths, of which we show only azimuths
60 and 150, the azimuths of the axes of the
variogram model. For a given azimuth and a
given distance, the goal is to check how two data
points (= a pair) are similar. If the values of the
two points making every pair are the same, the
correlation is perfect and the corresponding
point of the experimental variogram will be
at Y=0 on the variogram analyzer. This only
happens at the origin of the graph, where the
distance is zero and each node is compared
to itself. The bigger the distance, the lower the
correlation will get, until a distance (the range)
is reached beyond which there is no more
correlation. At this stage, the points of the
experimental variogram plateau. This plateau is
the sill. For stationary and ergodic properties,
the sill is the variance of the data.

A good variogram model will be one that

starts at the origin, climbs progressively
until reaching a plateau equal to the sill of
the experimental variogram. It is essential
to properly fit the experimental variogram
between the origin and the range, as this is the
part of the variogram model which will have
the higher influence on the results of kriging
and simulation. It is also essential to capture
the anisotropy of the experimental variogram:
keeping an isotropic (circular) variogram
while the data show anisotropy will lead to
missing some important information about
the property we want to predict. Figure 3 A,
B and C were used for kriging and the results
are respectively shown on Figure 6, Figure 7
and Figure 8.As can be seen with this dataset,
different variogram shapes do indeed give
some drastically different models.
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Figure 4.Variogram analyzer showing the experimental
variograms for the limited dataset (Figure 2B) along the
azimuths 60 and 150 degrees + variogram model for
the flattened variogram (C).

Adjusting a variogram model is often
challenging. It is rare to have a dataset as dense
as the one used here (Figure 2A). As a result,
it is rare to have horizontal experimental
variograms as clean as in Figure 3. Often, the
data is limited and the experimental variogram
difficult to interpret (Figure 4). In this example,
the experimental variogram in azimuth 60
degrees even looks as if it’s a perfect sill: there
are no points dipping down progressively to
the origin. If this were true, it would mean
that even for very short distances, there is no
correlation between the values.While true for
some ore deposits, this is rarely — if ever — the
case in sedimentary rocks.The issue is not the
geology but the dataset: the facies distribution
is under-sampled and as such the first few
points are not representative. In petroleum

(.. Continued on page 24
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(.. Continued from page 23)

studies, variogram models should always
start at the origin unless it can be backed up
otherwise with solid geological evidences.
In technical terms, we should never have any
nugget effect (= variogram model not starting
at zero).

KRIGING & SIMULATION -
DENSE DATASET

The datasets and the variograms introduced
in the previous section were used as input for
kriging and simulation. The dense dataset is
used in this section, while the limited dataset
is used in the next section. Figure 5 shows
the conceptual model from which the dense
dataset was extracted.The limited dataset is a
subset of the large one.The area represents
a set of fluvial channels which flow from the
North to the South along the azimuth 150
degrees. Naturally, in a real study, the truth
is not known. Here, we are assuming that the
well data and the geological context lead the
geologist to see it is a fluvial system and the
dipmeter data helped identifying the main
azimuth of 150 degrees. Kriging was applied
first with different variograms (Figure 6,
Figure 7 and Figure 8) before simulation was
run using the most elongated ellipse (Figure 9
and Figure 10).
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Figure 5 Conceptual sand/shale d:stnbuuon from which
a dataset was extracted and used in this study.

Kriging was first done using an isotropic
variogram (Figure 6), even if the variogram
analyzer showed that this variogram has too
short a range in the azimuth 150 (Figure 3A).
After all, with such a dense dataset, why shall
we worry about the preferred orientation
of the facies distribution? The data will take
care of everything for us with some simple
interpolation! The result is good overall and
the sand facies does align along North-South
geobodies, which might be interpreted as large
channels. These channels are, nevertheless,
wider than the input ones we know the
dataset is coming from.

Then, kriging is done using a variogram model
matching the experimental variogram (Figure
3B). One might argue that the plateau for
the azimuth 150 is lower than the plateau
at azimuth 60. In a real study, this would be
investigated further. The resulting model
(Figure 7) is closer to what we expected.The
sand geobodies are more continuous along
the azimuth 50 than in the first model. As
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our variogram is fitting to the experimental
points, we could stop here.

Figure 6. Kriging on the dense dataset —
isotropic variogram.

Figure 7. Kriging on the dense dataset — slightly
anistropic variogram.

The geologist insisted though that he
expected the channels to be even more
continuous than they are now. He asked us to

see if we could find a way to make it happen.

After some testing, we decided to run kriging
with a highly anisotropic variogram (Figure
3C). Of course, this variogram no longer
matches the experimental variogram in the
azimuth 150 - our new range is much too
large.The kriging results pleased the geologist
though (Figure 8) as the channels are now
much better defined than before, as can be
seen in the rectangle area labelled 2 noted in
Figure 5 to Figure 8..In the meantime though,
we start creating channel geobodies where
none should exist (rectangle labelled I, same
pictures).Also, we still can’t get some channels
right (rectangle labelled 3, same pictures).This
channel was not sampled well enough by our
wells for kriging to be able to track it

Figure 8. Kriging on the dense dataset — highly
anistropic variogram.

In a real project, it would make sense to
carry forward at least the two anisotropic

variograms as it is impossible to know which
one is the most reasonable one. The shape,
dimensions and orientations of the variograms
is a major source of uncertainty. In many
reservoir modeling projects though, studying
the variogram uncertainty is not done. Instead,
modelers tend to pick one variogram — here
the highly anisotropic one for example — and
they run numerous simulation models with it.
Figure 9 and Figure 10 are examples of two
such simulation realizations. Each realization
respects the input data, the input facies
proportion and the input variogram. But each
does it by distributing the sand and shale
slightly differently.

Figure 9. One possible simulation realization among
many, created using the highly anisotropic variogram
— dense dataset.

Figure 0. Second possible simulation realization
among many, created using the highly anisotropic
variogram — dense dataset.

Realizations defined by simulation have
considerable value as together they build a
range of possible rock distributions for the
reservoir. This range can then be used to run
sensitivity analysis while doing well planning
or reserve computations for example. Ideally,
modelers should first spend time understanding
the uncertainty hidden in the variograms
but also in the proportions they are using.
In a second step, they can use simulation to
generate multiple realizations in which these
different key sources of uncertainty are taken
into account.

At last, modelers should not limit themselves
in matching the data strictly. It often makes
sense to adjust our data analyses in light of the
extra information provided to them by their
team. General geological knowledge must be
used to transform data into information.



KRIGING & SIMULATION -
LIMITED DATASET

As mentioned earlier, the dense dataset is
not realistic and one might even argue based
on it that isotropic variograms are in fact
good enough.To test this hypothesis, a subset
made of 1/8th of points of the dense dataset
has been randomly picked and kriging and
simulation was run on it.

Firstly, kriging was run using an isotropic
variogram. If we use the same small range than
for the dense dataset, one gets an ocean of
sand with a few patches of shale (Figure |1B).
This is mathematically correct, but geologically
implausible: it doesn’t look anything like the
fluvial system we know we have. Kriging
is assigning an average value — sand in this
case — at all the locations too far from the
input points for the variogram to include
them. This is an example of problematic
extrapolation that is up to us to spot and fix
by changing the kriging parameters. Using a
very range |0 times the size of the initial one
fixes this problem (Figure |1A). Nevertheless,
the model still doesn’t show any channel.

Figure I1. Kriging on the limited dataset — isotropic
variogram with a long (A) and a short (B) range.

If we use the highly isotropic variogram, the
model is showing some elongated geobodies
that start looking like channels (Figure 12).
But we are still far from the level of detail that
we obtained with kriging the dense dataset
(Figure 8).

Figure 2. Kriging on the limited dataset — highly
anisotropic variogram

On the other hand, the results of running
simulation with this anisotropic variogram are
very interesting (Figure |13 and Figure 14).The
sand distribution in these two realizations is
similar to the ones computed from the dense
dataset (Figure 9 and Figure 10). It means that

with a good variogram and simulation, even
this limited dataset allows us to show possible
geometries for the channels that our team
knows must be present. Naturally, the local
variations between these two realizations
are much more important than with the two
realizations of the dense dataset. For example,
with this dataset (Figure 13 and Figure 14),
the areas in rectangles | and 2 change from
sand to shale drastically while with the two
realizations ran on the dense dataset are very
similar in these areas (Figure 9 and Figure 10)
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Figure 3. One possible simulation realization among
many, created using the highly anisotropic variogram
— limited dataset.
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Figure 4. Second possible simulation realization
among many, created using the highly anisotropic
variogram — limited dataset.

This example shows that geostatistics have
the potential to create realistic models even
from a small dataset.

CONCLUSION

Geostatistics  techniques are  powerful
because they take into account both the
statistics and the spatial variability of the data.
They are an essential part of every reservoir
modeling workflow.

Having reviewed the reservoir modeling
workflow in this paper and the previous
one, the next three papers will focus on
the interaction between reservoir modeling
and geology, petrophysics and geophysics
respectively. After this, the focus will shift to
the interaction between reservoir modeling
and engineering.

TO GO BEYOND

Geostatistics are a vast topic that is
impossible to cover in a short introduction
paper. Aspects of vertical, horizontal and 3D
trends as well as the declustering of input data

will be discussed in the papers on geology,
petrophysics and geophysics.

Several important categories of geostatistical
techniques could not be presented either
by lack of space. Readers interested in
plurigaussian  simulations can refer to
(Armstrong and als, 201 I), while those eager
to know more about multipoint geostatistics
should have a loot at (Mariethoz and Caers,
2014).

(Isaaks and Srivastava, 1990) is a good
introduction on geostatistics, as are the
different courses on the topic that the CSPG
offers every year.

Lastly, Alberta has the chance to host one
of the world’s leading teams in geostatistics:
the Center for Computational Geostatistics
in Edmonton, led by Professor Clayton
Deutsch  (www.ccgalberta.com). Each of
their publications is a valuable source of
information and of new ideas on geostatistics.
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